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Introduction

Advanced persistent threats (APTs) are stealthy and covert cyber-attacks

designed to penetrate specific computer networks through exfiltration,

corruption of data, or damaging critical systems. One method for identi-

fying APTs is to detect anomalous OS-level activities, which are not easily

detectable using traditional security measures as APTs stay dormant over

a long time, mimic normal operations, and constitute only a minuscule part

of all operations.

This paper presents and evaluates the AutoEncoder and Adversarial Au-

toEncoder models trained to reconstruct normal data faithfully, highlight-

ing anomalous data whose reconstruction errors are high. The two models

show good performances on par with or surpassing classical anomaly de-

tection algorithms. The ability to isolate suspicious activities in OS-level

data is of significant importance to detecting APTs early and mitigating im-

pacts on the system.

Methodology

The following methods use deep neural networks trained on normal data

to learn some meaningful compressed representation of regularities that

can be used to reconstruct the data as faithfully as possible and further

distinguish anomalies.

AutoEncoder

Figure 1. General architecture of the AutoEncoder model.

The AutoEncoder learns to capture the most important compressed fea-

tures of the normal data that can be used to reconstruct the data as accu-

rately as possible and will fail to reconstruct data with abnormal patterns.

Loss function: LAE = |X − X̃| = |X − D(E(X))|
Anomaly score: A(x) = |x − x̃| = |x − D(E(x))|

Adversarial AutoEncoder

Figure 2. General architecture of the Adversarial AutoEncoder model.

Inspired by the Generative Adversarial Network [3] architecture, a deep

neural network acts as the discriminator attempting to separate original

data from data reconstructed by the AutoEncoder (the generator). The

AutoEncoder is further motivated to reconstruct data that resemble the

original data as closely as possible to fool the discriminator.

Loss functions:

Discriminator: LD = |−→1 − D(X)| + |−→0 − D(G(X))|
Generator: LG = |X − G(X)| − λ × LD

Anomaly score: A(x) = |x − x̃| = |x − G(x)| = |x − GDe(GEn(x))|

Data

Data from DARPA’s Transparent Computing program [1] includes system

operations recorded while APT-style attacks are carried out on 4 OS: An-

droid, Linux, BSD, Windows. Each system has two scenarios: Pandex

and Bovia. The final data includes Boolean-valued datasets called con-

texts, each representing an aspect of process behavior. Each OS/scenario

pair has 5 contexts: Event, Exec, Parent, Netflow, All. In most datasets,
anomalous processes constitute under 1% of all processes.

Figure 3. A sample of processes from one dataset.

Evaluation method

Normalized discounted cumulative gain

The models prioritize assigning higher scores to anomalous data points and

producing a ranking of the processes based on how anomalous they are.

The metric chosen is the normalized discounted cumulative gain (nDCG)

[4] typically used in Information Retrieval to measure the ability to retrieve

relevant entities. nDCG score ranges from 0 to 1, with 1 being the best

score i.e. when all anomalies are ranked at the top.

DCG =
N∑

i=1

reli
log2 (i + 1)

; nDCG = DCG

iDCG

reli: relevance score of the ith entry. iDCG: best achievable DCG.

Baseline algorithms

Performances of the two models are evaluated against 4 unsupervised al-

gorithms for anomaly detection previously evaluated on the same datasets

[2]: Attribute Value Frequency, Frequent Pattern Outlier Factor, Outlier

Degree, One-Class Classification by Compression.

Results

Process All Event Exec Parent Netflow

Cadets

(BSD)

Pandex
AE 0.8215 0.5791 0.8165 0.5358 0.1165

AAE 0.7268 0.6394 0.6276 0.5822 0.1175

Bovia
AE 0.8077 0.4823 0.8168 0.7992 0.1519

AAE 0.9079 0.4848 0.8524 0.8035 0.0760

5dir

(Windows)

Pandex
AE 0.5931 0.7086 0.2272 0.1970 0.6289

AAE 0.5989 0.6676 0.2882 0.1871 0.6495

Bovia
AE 0.4072 0.2639 0.3256 0.4303 0.0973

AAE 0.3952 0.2514 0.3218 0.4200 0.1298

Trace

(Linux)

Pandex
AE 0.6064 0.4204 0.3013 0.2397 0.3953

AAE 0.7711 0.4916 0.4080 0.2278 0.4006

Bovia
AE 0.7054 0.4761 0.4871 0.2564 0.3725

AAE 0.6494 0.4234 0.4796 0.2850 0.3633

Clearscope

(Android)

Pandex
AE 0.7815 0.6708 0.4033 NA 0.6014

AAE 0.7857 0.5484 0.5885 NA 0.6284

Bovia
AE 0.2712 0.6357 0.5212 NA 0.3904

AAE 0.2949 0.2631 0.3952 NA 0.1681

Table 1. nDCG scores of the two architectures on all available contexts. NA: data not available.

Figure 4. Differences in nDCG scores achieved by the models and the best-performing baseline algorithms.

Figure 4 compares the performances of the twoAutoEncoder-based meth-

ods against the baseline algorithms. Each cell visualizes:

∆ = nDCGAE/AAE − max(nDCG{AVF, OC3, OD, FPOF})
The red cells mostly concentrate in the Android system and the Netflow
context. These datasets either contain few processes (Android) or pro-

cesses with very high dimensions (Netflow). In 26 out of the 38 datasets
(68.4%), the best nDCG score is achieved by either the AutoEncoder or the

Adversarial AutoEncoder model.

Figure 5. AutoEncoder rankings of anomalies on five contexts of the Linux system, Pandex scenario.

Conclusion and future works

This project presents two AutoEncoder-based methods to detect APTs us-

ing OS-level data. The models are trained exclusively on normal to as-

sign anomaly scores to the processes. The two models show good perfor-

mances on par with or surpassing classical anomaly detection algorithms,

especially in cases where the baseline algorithms fail to finish within a rea-

sonable time. The experiments and results from this paper can contribute

to the development of efficient methods for the early detection of APTs

in provenance data, potentially mitigating the damages of such attacks on

the system.

In the future, different types of neural networks can be used and the layers

should accommodate the varying dimensions of data. The Adversarial Au-

toEncoder’s discriminator can be modified to better balance theworkloads.

Further research is needed to establish a reliable threshold for abnormality

to further isolate anomalous processes.
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